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Abstract
The paper describes Brillouin light scattering studies of longitudinal acoustic
(LA) phonons in Cs5H3(SO4)4 × xH2O (PCHS) crystals at temperatures from
100 K to 360 K. The acoustic response of the crystal at different frequencies
is analysed in detail. It is shown that both the velocity and damping of sound
exhibit a strong dispersion caused by relaxation processes in the region of
transformation into the glass-like phase (Tg ≈ 260 K). A strong anisotropy
in the acoustic response, attributable to the quasi-two dimensional (quasi-2D)
structure of PCHS, is revealed. The LA phonon damping is calculated in the
framework of a number of relaxation models. It is shown that, in the vicinity of
Tg, anomalies in ultrasonic damping of the LA phonons propagating in the basal
plane reflect the cooperative effect of freezing of acid protons. At the same time,
the anomaly in damping of the LA phonon propagating perpendicular to the
basal plane is described in terms of the Debye model and is due to the interaction
between protons on hydrogen bonds and LA phonons. This suggests that the
proton glass state realized at T < Tg is of quasi-2D nature.

1. Introduction

Partially disordered crystals are attracting ever-increasing attention from researchers since
their physical properties can be controlled by intentional variation of the degree of disorder.
This feature also makes them highly attractive for commercial use. Disordered crystals can
be divided into compounds with static and dynamic disorder of one of crystal sublattices.
Crystals with partial static disorder include different types of orientational glasses [1], spin
glasses [2], relaxor ferroelectrics [3], etc. Dynamic disordering occurs, for instance, in
superionic crystals [4]. Of particular interest in these materials are specific features of lattice
dynamics, which are strongly affected by disorder. These include additional excitations
(localized excitations, pseudo-spin modes, relaxation modes etc.) in the vibrational spectrum
of the crystals and interaction of the additional excitations with phonons. It is difficult to obtain
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a clear and self-consistent picture of the lattice dynamics of disordered materials, because this
requires investigations in a wide frequency range. In particular, to analyse the behaviour of
acoustic phonons, the whole set of modern experimental techniques should be used, from
the internal friction method to inelastic neutron scattering, covering a frequency range of 13
orders of magnitude (from Hz to THz). This task is extremely complicated, and for this
reason the behaviour of acoustic phonons at hyper- and ultrasonic frequencies is compared
in most cases [1]. As a rule, even in such a limited frequency range, contributions from
different processes leading to a considerable modification of the acoustic response of partially
disordered crystals can be separated and identified [5].

Crystals of Cs5H3(SO4)4 × xH2O (PCHS) belong to a new class of compounds with
the general formula MezHy(AO4)(z+y)/2 × xH2O, where Me = Cs, Rb, NH4; A = S, Se;
0 � x � 1 [6]. A characteristic feature of the high-temperature phase of these crystals is
the existence of a dynamically disordered network of hydrogen bonds responsible for a high
protonic conductivity referred to as superprotonic [7, 8]. It has been shown experimentally
that protons play a decisive role in the lattice dynamics of this class of compound. A strong
isotope effect with respect to hydrogen manifests itself in a number of materials of the
MeHAO4, Me3H(AO4)2 and Me5H3(AO4)4xnH2O type as additional phases and structural
phase transitions. This effect has been widely studied by various techniques (see, e.g., [9–
11]). The protonic conductivity of PCHS is quasi-2D: σa/σc ∼ 50, which means that the
conductivity in the basal plane is nearly two orders of magnitude higher than that along the
hexagonal axis [6]. This reflects a specific feature of the PCHS crystal structure formed by
layers of SO4 tetrahedra linked by hydrogen bonds and located in the basal plane. In fact, the
quasi-2D dynamic network of hydrogen bonds, where the number of structurally equivalent
positions for protons is three times as large as the number of protons themselves, is realized
within this layer.

At room temperature, PCHS crystals belong to the hexagonal system with space group
P63/mmc (a = 6.2455 Å, c = 29.690 Å; V = 1003 Å3; Z = 2) [12]. From the viewpoint
of structural changes, events of particular interest occur in the vicinity of Tc1 = 414 K and
Tc2 = 360 K. At Tc1, a superprotonic phase transition accompanied by a symmetry change
P6/mmm ⇔ P63/mmc occurs [12, 13], and at Tc2 an isostructural phase transition associated
with changes in the local symmetry of SO4 tetrahedra takes place [14–16]. No other anomalies
associated with the structure changes in protonic samples have been observed. With decreasing
temperature, the dynamic disorder of the hydrogen bond network gives way to static disorder
(both orientational and positional), and the transformation into a proton glass-like phase is
realized in the vicinity of Tg = 260 K [17]. These features make the PCHS crystals unique
objects for studying the effect of disorder on the physical properties of these materials.

The goal of this work was to study how the disordering affects the behaviour of longitudinal
acoustic phonons at different frequencies by using the results of our Brillouin experiments and
comparing them with the ultrasonic data reported in [18].

2. Experimental details

Colourless single crystals of PCHS were grown by slow evaporation from saturated water
solution at room temperature. The obtained samples were in the form of plates with a developed
basal plane and typical hexagonal facets. The crystal orientation was determined by using a
polarizing microscope. A separate sample was used for each temperature cycle, and hence, all
the single crystals used in our experiments had the same prehistory.

Light scattering spectra were taken using a single-mode Ar+ Spectra-Physics laser with
λ = 488 nm. The laser radiation power was not higher than 50 mW. A backscattering geometry
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was used. The scattered light was analysed by a three-pass piezoscanning Fabry–Perot
interferometer with a Burleigh DAS-1 system with automatic signal acquisition and automatic
alignment of the interferometer mirrors, which provided the finesse of the interferometer at
C = 50. The measured free spectral range (FSR) of the interferometer varied within the limits
11–14 GHz.

For low-temperature measurements (294–120 K), an optical cryostat with sample cooled
by a flow of nitrogen vapour was employed. The sample temperature was monitored with an
accuracy of ±0.1 K by two copper–constantan thermocouples in contact with the sample. For
experiments at 294–420 K, a home-made optical furnace was used. The sample temperature
was measured using a chromel thermocouple with an accuracy of ±0.1 K.

The velocity (V ) and damping (α) of longitudinal hypersonic phonons in the 180◦

scattering geometry were determined as

V = νλ

2n
(1)

α = 4πnδ

νλ
(2)

where n is the refractive index of the crystal, ν is the shift of the Brillouin component, and δ

is its half width at half-maximum. In all calculations, we used the value n = 1.51 [19].
In this work, the temperature behaviour of longitudinal hypersonic phonons (LA) with

qph ‖ ch and qph ⊥ ch (qph is the acoustic phonon wave vector) in the PCHS crystals was
studied. The LA phonon velocity in a hexagonal crystal is determined by the elastic moduli
C33 = ρV 2 for qph ‖ ch and C11 = ρV 2 for qph ⊥ ch, where ρ is the density of the crystal,
taken from [12].

It was found to be more convenient to use relative changes in the velocity of hypersound
to analyse the data. Then we have from (1)

�V

V0
= V (T ) − V0

V0
≈ ν(T ) − ν0

ν0
(3)

where V0 and ν0 are the velocity and frequency of the hypersonic phonon shift at T = 178 K,
respectively. This temperature was taken as reference for matching the data because at this
point the disorder effects terminate at both ultra- and hypersonic frequencies. The approximate
equality sign in (3) indicates that we do not take into account the temperature dependence of
the refractive index in our calculations.

3. Behaviour of acoustic phonons

Figure 1 shows how the velocity of hypersonic LA phonons vary with temperature in the range
360 to 150 K. The behaviour of Brillouin light scattering above room temperature was discussed
in detail in [16], and therefore we shall not consider here the high-temperature part of the
temperature dependences. It should only be noted that we use a sufficiently wide temperature
range to allow a correct treatment of the behaviour of hypersonic LA phonons in the PCHS
crystals in the region of a transformation to the proton glass-like state. Indeed, it is evident from
figure 1 that in the range from 330 to 290 K the temperature dependences of the hypersound
velocity in the crystals studied can be approximated by a linear function. Deviations from the
linear temperature dependence start below 280 K, and a weak dispersion anomaly of velocity
is observed at around Tg. At lower temperatures, beginning with T ≈ 235 K, the experimental
results are again well described by a linear temperature dependence, but with a smaller slope.
This pattern is observed for phonons with both qph ‖ ch and qph ⊥ ch. Thus, a weak anomaly
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of the hypersonic velocity in the region of transformation into the glass-like phase extends for
∼50 K and exists in all the experimental geometries discussed. This is due to a distribution of
the relaxation times in the glass-like state, generally giving rise to dispersion anomalies in the
acoustic phonon velocity. Simultaneously, the frequency dependence of acoustic anomalies
must manifest itself [1, 5].
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Figure 1. Temperature dependences of the velocity of longitudinal hypersonic acoustic phonons
propagating in the basal plane and along the sixfold axis of the PCHS crystal. The arrows show
the anomalous region in the vicinity of transformation into the proton glass state.

To study the behaviour of the acoustic response of a PCHS crystal at different
frequencies, we compared the results obtained in our Brillouin light scattering experiments
(i.e. at frequencies of the order of 1010 Hz) with the data furnished by ultrasonic measurements
at frequencies of the order of 107 Hz [18]. Figures 2(a) and 2(b) show relative changes in the
velocity of longitudinal acoustic phonons propagating in the basal plane and along the C6 axis
at ultrasonic and hypersonic frequencies. As a reference point of the temperature dependences,
temperatures near T = 178 K were taken. As seen from figures 2(a) and 2(b), the temperature
dependences of velocity can be approximated by a linear function beginning with ∼230 K.
This gives grounds to suppose that the relaxation processes which are considerably affecting
the behaviour of the LA phonon velocity terminate at T ∼ 200 K, and at lower temperatures
the temperature dependences of velocity are governed by the lattice anharmonicity alone.
Therefore, the use of the temperature mentioned above as a reference point in comparison with
temperature dependences is justified.

Let us consider the behaviour of the LA phonon velocity at different frequencies. The
first feature to be noted is a strong dispersion reflecting the frequency dependence of the
relaxation contribution to the LA phonon velocity. Indeed, a decrease in the frequency at
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Figure 2. (a) Relative changes in LA phonon velocity in PCHS at ultra- and hypersonic frequencies
versus temperature for qph ⊥ ch and (b) qph ‖ ch. �V is the velocity jump (see the text). The
ultrasonic data are taken from [18].

which the experiment is carried out (the probe frequency) leads to extension of the dispersion
region associated with the logarithmic distribution of relaxation times. As a consequence, the
velocity anomalies in ultrasonic measurements are significantly modified compared with the
Brillouin frequencies. This accounts for the extension of the dispersion region from ∼50 to
100 K and a fourfold increase (from 2% to 8%) in the velocity variation�V in the vicinity of Tg

(see figures 2(a) and (b)). This means that a decrease in the probe frequency increases the value
of the changes in the acoustic phonon velocity. This trend is well known from analyses of the
behaviour of the acoustic response in the region of transformation into the glass-like phase of
such compounds as (KBr)0.8(KCN)0.2 or (NaCN)1−x(KCN)x [1] or in the vicinity of a diffuse
phase transition in a relaxor ferroelectric PbMg1/3Nb2/3O3 [20]. It should be noted that the
changes in the LA phonon velocity in the PCHS crystal exhibit a strong dependence not only on
frequency, but also on the phonon propagation direction. At ultrasonic frequencies, �V ∼ 8%
for qph ⊥ C6 and 5% for qph ‖ C6. At hypersonic frequencies, the value of the velocity
variation is nearly independent of the propagation direction and is equal to ∼2%. This is likely
to be due to the participation of different relaxation mechanisms: at ultrasonic frequencies the
velocity dispersion is mainly determined by the ‘slow’ α-relaxation, which is anisotropic, and
the behaviour of hypersonic phonons is governed by the ‘fast’ isotropic β-relaxation. This
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situation is widely discussed in the context of the mode-coupling theory, successfully used to
describe the results obtained in studying the acoustic response in polymers [21] and glasses [22]
at phase transformations.

Unfortunately, no theoretical model allowing a quantitative analysis of the effect of
different processes on the sound velocity behaviour in the PCHS crystal has been suggested
yet. For this reason we shall discuss the sound velocity behaviour on the qualitative level. Let
us pay attention once more to the shape of the anomaly. In conventional orientational glasses
the velocity has its local minimum in the vicinity of Tg. With decreasing probe frequency, the
minimum becomes deeper and shifts towards lower temperatures [1]. For the PCHS crystal,
the shape of the velocity anomaly is likely to be associated with a transition into the superionic
phase, as, e.g., in Ag2HgI4 [23] or PbF2 [24] crystals, or with transformation into the glass-like
state, as in polymers [21] and some other materials in which relaxation anomalies with strong
frequency dependence are observed in the temperature dependence of the acoustic phonon
velocity [25].

Thus, anomalies in the velocity of sound in PCHS do not resemble those observed in
‘classical’ transitions into the orientational glass state. This is probably due to the fact that
the lattice dynamics of PCHS do not contain a critical contribution from the structural phase
transition, modified, e.g., by interacting ferro- and antiferroelectric order parameters, as in
RADP, or by a translational–rotational interaction, as in quadrupolar glasses. The point is that
the glass-like phase is formed in the majority of well known orientational glasses by competing
interaction, which is absent, in its commonly accepted meaning, in the PCHS crystals.

3.1. Damping anomalies and differences between the behaviour of hyper- and ultrasonic
phonons

The anomalies of the acoustic phonon velocity in the region of transformation of the PCHS
crystal into the glass-like phase must have corresponding damping anomalies. Figure 3 shows
the temperature dependences of the damping of hypersonic LA phonons with the polarization
vectors q directed along the sixfold axis and lying in the basal plane, taken in the range 120
to 360 K. It is easily seen that the damping of hypersonic LA phonons does not exhibit any
anomalies in the vicinity of Tg. A significant increase in damping of the phonon with qph ⊥ C6

occurs only atT � 320 K and extends to 360 K, while for the phonon with qph ‖ C6 the damping
grows immediately in the vicinity of 360 K [16]. Above 360 K no Brillouin component could
be detected in the light scattering spectra. A similar behaviour of light scattering was observed
in Raman experiments, where the background and the contribution of quasi-elastic scattering
sharply increased in the vicinity ofT = 360 K [14], which points to considerable changes in the
light scattering conditions in the crystal (formation of cracks, inhomogeneities etc.). In [16],
damping anomalies in the vicinity of 360 K were attributed to an isostructural phase transition.

The behaviour of LA phonons at ultrasonic frequencies [18] appreciably differs from our
findings: a broad damping peak correlating with the velocity anomalies of the corresponding
ultrasonic background is observed in the vicinity of Tg [18] (compare figures 3, 4 and 5).
An analysis of the ultrasonic damping [18] revealed that the damping peak has relaxation
nature and can be described in terms of a model with a Gaussian distribution of activation
energies. It was quite natural to suppose that calculations relying on ultrasonic measurements
would allow us to correctly describe the temperature evolution of damping of hypersonic LA
phonons. Unfortunately, all attempts to reproduce the calculations made in [18] for ultrasonic
frequencies and recalculate them to the Brillouin scattering results failed. For this reason
we had to invoke a number of basic models used to analyse damping anomalies in partially
disordered crystals.
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Figure 3. Temperature dependences of damping of longitudinal hypersonic acoustic phonons
propagating in the basal plane and along the sixfold axis of the PCHS crystal. The full and broken
curves show changes in damping at hypersonic frequencies recalculated from ultrasonic data. The
dash-and-dot and dotted curves indicate the possible anomalous contribution of the isostructural
phase transition to the damping. The inset presents the calculated relaxational hypersonic damping.

3.1.1. The relaxation mechanism in damping of acoustic phonons
Debye model. In a number of cases (low concentration of two-level systems, mobile atoms
or ions) relaxation damping can be defined as a Debye-like process with a single relaxation
time τ

α = NB2

4πρν3kT
ω

ωτ

1 + ω2τ 2
(4)

where N is the number of mobile atoms or ions, B is the deformation potential constant and k

is the Boltzmann constant. It is assumed that the relaxing units are identical and interact with
the deformation field independently of one another. It is evident that in this case the damping
peak occurs at ωτ ∼ 1.

Model with distribution of activation energies. However, there are many situations
when the relaxation damping contour is much broader than the classical Debye contour, which
means that the curve cannot be described in terms of the model with a single relaxation time.
A conventional approach to resolve this difficulty, successfully applied to a large number of
compounds (see, e.g., [26–30]), is as follows: the observed damping is regarded as a sum
of several Debye peaks corresponding to a distribution of activation energies (and, hence, a
distribution of relaxation times). It is assumed that each Debye relaxator interacts with the
deformation field independently. In this case the damping is given by

α = NB2

4πρkT ν3
ω

∫
g(E)ωτ(E)

1 + ω2τ(E)2
dE (5)
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where the parameters of the distribution function g(E) can be obtained by fitting the model to
the experimental curve. Most often, the Gaussian distribution function is used

g(E) = 1√
2πE0

exp

[
(E − Ea)

2

2E2
0

]
(6)

where Ea is the activation energy for overcoming the barrier separating two potential minima,
and E0 is the dispersion of the Gaussian distribution (in the given case it corresponds to the
activation energy range for ions interacting with the deformation field).

Universal model. In superionic conductors the concentration of mobile ions is fairly
high and the assumption that relaxators are independent can prove physically unjustified.
In this situation it would be expected that the relaxing system will exhibit a pronounced
cooperative behaviour. In this case the temperature dependence of damping is adequately
described by [27, 30]

α ∝ 1

T
ω

(ωτ)m

1 + (ωτ)1+m−n
(7)

where 0 � m, n � 1. The maximum damping is reached at ωτ = (m/(1 − n))1/1−n+m. Note
that at m = 1 and n = 0 the damping contour described by (7) will acquire a classical Debye
shape. This means that the Debye model is a particular case of the universal model.

In all of the cases considered above it is assumed that the temperature dependence of the
relaxation time has a thermal activation character and obeys the Arrhenius law [4]

τ = τ0 exp

(
Ea

kt

)
(8)

whereEa is the activation energy, and τ−1
0 is the frequency of ion hopping between energetically

equivalent positions (in the approximation of the absolute rate theory).
Having outlined the approaches used, we now discuss the results obtained.

3.1.2. Fitting and results Figure 4 presents the results of calculations relying on the classical
Debye model (4) for the case of damping of ultrasound propagating along the sixfold axis
(the [001] direction). It is easily seen that the data obtained using the model with a single
relaxation time are in excellent agreement with experiment (standard deviation 0.04) for all
temperatures. For protons located in the two-minimum potential of the hydrogen bond lying
along the hexagonal axis, τ0 = 4.8 × 10−14 s, Ea = 0.28 eV (table 1). Recall that the
Debye model is a particular case of the model with a relaxation time distribution (5) for g(E)
in the form of the Dirac delta function. By approximating the temperature dependence of
damping in terms of the model with a distribution of activation energies, the authors of [18]
obtained a very low activation energy dispersion E0 = 0.008 eV corresponding, in principle,
to the Dirac delta function (E0/Ea ∼ 0.03). Note that the activation energy obtained in our
calculations coincides with the data of [18], although the relaxation time differs by about an
order of magnitude (see table 1). Thus we have succeeded in describing adequately in terms
of the Debye model the damping of an ultrasonic LA phonon propagating along the hexagonal
axis. In this case the damping is governed by the interaction of acoustic waves with individual
protons on hydrogen bonds.

Figure 4(a) illustrates the relaxation damping of ultrasound propagating in the basal plane,
calculated using the models discussed above. It is obvious that the Debye model fails to
describe adequately the observed damping contour (figure 4(b) shows the best fitting results
with relaxation time and activation energy τ0 = 4.8 × 10−14 s and Ea = 0.255 eV). A more
complicated pattern was obtained in calculations using the model with a Gaussian distribution
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Table 1. Comparison of the model parameters from the present paper and from the existing
literature.

Source Direction τ0 (s) Ea (eV)

This article [001] 4.8 × 10−14 0.28
[100]a 4.8 × 10−14 0.27

Reference [18] [001]b 8.0 × 10−15 0.32
[100]c 8.0 × 10−15 0.28

Reference [31] — 1.0 × 10−12 0.34
Reference [32] — 8.7 × 10−14 0.26
Reference [17] — 8.0 × 10−15 0.27

am = 0.85, n = 0.65
bE0 = 0.008 eV
cE0 = 0.034 eV
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Figure 4. Damping of ultrasonic LA phonon: (a) qph ‖ ch and (b) qph ⊥ ch. Full circles
represent experimental data [18], the dash-and-dot curve shows the results of our calculations in
the framework of the classical Debye model (4); dots correspond to a calculation using the model
of the activation energy distribution (5); and the full curve indicates our calculations in terms of
the universal model (7).

of activation energies (5). Good agreement between the model and experiment (shown by dots
in figure 4(b)) was found only for τ0 = 1.5 × 10−15 s, Ea = 0.32 eV, E0 = 0.057, which, in
our opinion, are not physically meaningful in this case: the relaxation time is too short and
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the dispersion of Ea is rather large. Note that, to achieve consistency between the model (5)
and experiment, expression (5) is to be integrated in the interval 6E0. The physical reason for
such a wide range of activation energies for individual relaxators is unclear.

Only calculations in terms of the universal model gave excellent agreement (standard
deviation 0.14) with the experimental temperature dependence of the damping curve for the
acoustic phonon at ultrasonic frequency (figure 5). The parameters used in calculations with
the model described by (7) were as follows: τ0 = 4.8 × 10−14 s, Ea = 0.27 eV, m = 0.85 and
n = 0.65. With these parameters for m, n and τ0, the temperature at which the attenuation is at
a maximum for the universal model, given by the condition ωτ = (m/(1 −n))1/1−n+m, should
be about 94% of that for the Debye model with the same Ea and τ0. In fact, comparison of
figures 4(a) and 4(b) shows that the ratio of the temperatures at which attenuation peaks are
observed is approximately 0.92, lending support to our use of the different models to describe
the attenuation of phonons propagating within, and perpendicular to, the basal plane.

Thus, in the basal plane, where the number of protons in energetically equivalent positions
is much larger than in the hexagonal axis direction, damping is governed by the collective
behaviour of the proton system. Note that the relaxation times and activation energies (i.e., the
parameters that immediately determine the relaxator properties) obtained in our calculations
are nearly the same for the [100] and [001] directions. In our opinion, this demonstrates that
we have properly chosen the models, because it is quite reasonable to expect that parameters
of the two-minimum potential do not depend appreciably on the crystallographic direction.

4. Discussion

We obtained parameters of the phenomenological models adequately describing ultrasonic
measurements. Let us calculate changes in the relaxation damping of an acoustic phonon
at hypersonic frequencies by using the values of Ea and τ0 obtained in section 3.3 and
compare them with the dependences obtained in Brillouin scattering experiments. Figure 3
shows experimental and theoretical temperature dependences of the hypersonic damping.
The theoretical (calculated, to be more exact) damping dependences are the dependences
recalculated from ultra- to hypersonic frequencies. In the vicinity of Tg, the calculated
changes in damping at hypersonic frequencies correlate with our experiments. Above room
temperature, the behaviour of the hypersonic damping is much more complicated: a sharp rise
in damping is observed experimentally in the region of T > 320 K, absent in the calculated
temperature dependences. Anomalies in the acoustic response of the crystal in the region
of an isostructural phase transition Tc2 [16] may contribute to hypersound damping in the
vicinity of 360 K in addition to the calculated relaxational damping. Therefore, according to
our calculations, the relaxation damping peak observed in the region of 250 K at ultrasonic
frequencies is reached at hypersonic frequencies only at 480 K (see the inset of figure 3). In
fact, this temperature cannot be attained since the PCHS crystal starts to decompose above
430 K.

Let us compare the τ0 and Ea values obtained in our work with the results of other
measurements (for illustrative purposes, the data are summarized in table 1).

NMR data for a powder sample of PCHS, differing from our results, were reported in [31]
(see table 1). A probable reason for the discrepancy is, as stated by the authors of [31],
‘a rough estimate of the results in the one-relaxation-time approximation’, on the one hand,
and an averaged estimate obtained in measurements on polycrystalline samples, on the other.
Comparison of our data with those obtained in dielectric studies of the PCHS crystal [17, 32]
gives more optimistic results. As seen from table 1, the activation energies obtained in dielectric
measurements are similar to ours. The situation with the relaxation time is more complicated.
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Thus, the activation energies and relaxation times obtained in our calculation correlate, on the
whole, with the data of dielectric measurements of PCHS.

Let us return to our calculations in the preceding section. It was shown that the mechanism
of the LA phonon damping at ultrasonic frequency in the vicinity of Tg strongly depends on the
crystallographic direction. For an ultrasonic acoustic phonon propagating along the hexagonal
axis, the damping is described by the classical Debye model. For damping of ultrasonic acoustic
phonons propagating in the basal plane, the result is quite different: the anomaly in the vicinity
ofTg is described with a good approximation in the framework of a phenomenological universal
model involving a cooperative behaviour of protons. The situation when the relaxation in a
crystal is governed by individual identical Debye relaxators in one direction, and by cooperative
behaviour of relaxators in another, is surprising. To our knowledge, no situation of this kind
has been described. This contradiction can be overcome if we suppose that a quasi-2D proton
glass state is realized in the PCHS crystal below Tg. This means that the processes involved in
the lattice dynamics of PCHS and associated with ‘freezing’ are pronounced in the basal plane
and negligibly weak along the hexagonal axis. The suggested pattern corresponds to structural
features of the PCHS crystal: the quasi-2D nature of the dynamically disordered network of
hydrogen bonds is preserved at and below the freezing temperature. These processes are also
reflected in α-relaxation anisotropy, revealed in analysis of the dielectric response dispersion
of PCHS [17]. At the moment it can be supposed that the key role in the lattice dynamics
is played by dipoles formed by random orientation of complexes consisting of SO4 groups
and protons connecting them in the basal plane of the PCHS crystal. Thus, we have obtained
conclusive evidence that the proton glass state in the PCHS crystal can be defined as a quasi-2D
system, or quasi-2D proton glass.

5. Conclusions

We have carried out Brillouin light scattering studies of the behaviour of longitudinal acoustic
phonons in the PCHS crystal in a wide temperature range including the region of transformation
into the glass-like state. Analysis involving comparison of the results obtained in studying
the acoustics properties of the PCTS crystal at hypersonic (f ∼ 17 GHz) and ultrasonic
(f ∼ 10 MHz) frequencies has revealed a number of exciting features. These are the
dispersion of the velocity anomalies of acoustic phonons in the region of phase transformation
into the glass-like state and the unusual anisotropy of damping anomalies at low (ultrasonic)
frequencies. Temperature dependences of LA phonon damping drastically differ at different
frequencies: a well-defined damping peak is present in the vicinity of Tg at ultrasonic
frequencies and absent at hypersonic frequencies. In calculations carried out in the framework
of different models, the most probable mechanisms of mechanical relaxation in the main
directions, i.e., along the sixfold axis and in the basal plane, were revealed. It has been shown
that the propagation of longitudinal sound along the C6 axis can be described by the classical
Debye model. It has been convincingly demonstrated that the sound damping in the basal
plane is governed by the collective behaviour of protons located in energetically equivalent
positions on hydrogen bonds.

Therefore, the proton glass state realized in the PCHS crystal at T � 260 K has a quasi-
2D character. The dielectric and structural specific features of PCHS, together with our data,
allow PCHS to be regarded as a representative of a new class of crystals in the quasi-2D proton
glass-like state.
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